
Design and Implementation of RAP - a Randomized Asynchronous
Protocol for Data Aggregation in Wireless Sensor Networks

Jiahui Dai1, Dmitry Degtyarev1, Jingya Gao1, Adrian Wang1, Scott Burman2, Ken Zillig3, Dipak Ghosal1

Abstract— We consider a distributed deployment of sensors
and a network of wireless relay nodes designed to operate in
an environment in which there exists neither a stable energy
source nor a global clock to which the network (sensor, relay,
and gateway) nodes can synchronize. For such an environment,
we design and implement a randomized asynchronous protocol
(RAP) for aggregating data at the gateway. The protocol is
based on the randomized sleeping of nodes in an asynchronous
manner, taking advantage of the birthday paradox to ensure
eventual communication. We present an approximate mathe-
matical analysis and develop a simulation model to study the
performance of the protocol under different sleep parameters:
specifically, the duration of the random sleep times of the
transmitter and the receiver. We show that a low average
data transfer time can be achieved with low energy usage. We
implemented the protocol on an Adafruit Feather 32u4 board,
including a number of optimization to further improve the
performance and minimize energy usage. Finally, we deployed a
wireless sensor network for distributed temperature monitoring
of aquaculture research at the Center of Aquatic Biology and
Aquaculture (CABA) of University of California, Davis.

Index Terms— Wireless Sensor Network, Randomized Proto-
col, Asynchronous Protocol, Simulation Analysis, Deployment

I. INTRODUCTION

Wireless sensor networks (WSNs) [3], [24] are used in
monitoring applications such as early detection of forest
fires [8], actuating applications such as precision agricul-
ture [12] or energy usage control in smart homes [19], [7],
high resolution spatio-temporal monitoring in underwater
environments [21], and tracking applications such as animal
telemetry [10]. In a typical scenario, sensors are distributed
over a geographical area and the data from these sensors are
aggregated at a gateway node. This gateway then uploads
the data to be processed and analyzed on a server. The focus
of this study is on the data transfer protocol that aggregates
the data from distributed sensors to the gateway node via the
wireless mesh network of relay nodes.

Wireless sensor networks often operate in environments
where there is no stable power source and no access to a
network time server to synchronize their clocks. In such
environments, a key requirement is to achieve high data
fidelity while optimizing energy usage. Data fidelity depends
on the application and could include (among other metrics)
the fraction of the data generated by the sensors that is
received at the gateway node and/or the data transfer time

1 Department of Computer Science, University of California, Davis
2 Department of Land, Air and Water Resources, University of California,

Davis
3 Department of Wildlife, Fish and Conservation Biology, University of

California, Davis

from the sensors to the gateway. In this study we consider a
randomized and asynchronous data transfer protocol to ad-
dress the environmental constraints of deploying a distributed
monitoring system.

Randomized protocols have been studied in the context of
WSNs. In a seminal paper [13], a randomized protocol based
on the ”birthday paradox” was developed for ad hoc wireless
networks to save energy during the deployment phase as well
as to perform adjacent node discovery in an energy efficient
manner. This paper analyzed a number of different birthday
protocols both using abstract mathematical models as well
as detailed simulation analysis. This work has over the years
spurred a number of studies both in wireless ad hoc networks
as well as in wireless sensor networks [15], [22], [16].

In this paper we adopt the birthday paradox to design and
implement a randomized data transfer protocol to aggregate
data at a gateway node. Unlike prior studies, we consider an
asynchronous protocol. We consider a network of nodes with
static routing which is achieved by pre-assigning channels
on which nodes receive. Transmitters sleep for a duration
that is sampled from a given distribution. Upon waking
up the node transmits a packet (if a packet is present in
its queue) and waits for an acknowledgement (ACK). The
receiver also sleeps for a random time sampled from a given
distribution. Upon waking up it listens for a specified amount
of time for a data packet to arrive. Similar to the birthday
paradox, we show that even when sleep duration is relatively
large, the nodes can ”synchronize” relatively quickly, thereby
achieving a low average data transfer time.

The asynchronous nature of the protocol eliminates the
need for the nodes to synchronize to a global clock. This
is an important feature as clocks in low-cost sensors and
network nodes can have significant drifts. Furthermore, the
asynchronous nature of the protocol also allows multiple
senders to share a common channel to a receiver. The
following are the main contributions of the present paper.

1) Design of a randomized asynchronous data transfer
protocol to aggregate data in a wireless sensor network.
The underlying randomization is based on the ”birth-
day paradox.” However, unlike previous studies of
birthday paradox in self-discovery of sensor nodes, we
have adopted an asynchronous approach that does not
require any clock synchronization among the nodes.

2) Development of a mathematical model and a detailed
simulation model to study the parameter space of the
protocol and determine the parameter settings that co-
optimize the data transfer time and the energy usage.

3) Implementation of the protocol for a distributed tem-

2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks

978-1-7281-4905-9/20/$31.00 ©2020 IEEE 980Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 01,2020 at 22:04:52 UTC from IEEE Xplore. Restrictions apply.

Sleep Transmit ACK

Event: Timer expired
—————————
1. Turn on

Event: No packets to send
———————————-
1. Sleep for X ∼ Exp(λTX)

Event: Packet sent
————————
1. Set ACK timer

Event: Timer expired
—————————
1. Sleep for X ∼ Exp(λTX)

Event: ACK received
—————————
1. Pop packet queue
2. Sleep for X ∼ Exp(λTX)

Fig. 1. The FSM representation of TX. The nodes represent the states and
the arcs represent the transition which are triggered by events and invoke
actions.

perature sensing application at the Center for Aquatic
Biology and Aquaculture (CABA) at University of
California, Davis (UC Davis). The protocol is im-
plemented on a system with Adafruit Feather 32u4
boards programmed as relay nodes and a raspberry pi
programmed as the gateway node. The results indicate
that the implementation achieves the benefits predicted
by the simulation and mathematical analyses of the
protocol.

II. THE PROTOCOL

Wireless sensor networks often operate in environments
without a stable power source. In these cases, a synchronous
protocol would exhaust energy too quickly, as it requires
either a reliable clock for consistent synchronization, or,
network nodes remaining awake continuously, idly listening
for a signal with which they establish a connection. With
energy-saving in mind, a protocol which allows nodes to
send messages to each other without having to synchronize
would allow nodes to sleep, turning on only periodically to
reduce energy usage. Through randomized transmissions, we
constructed an asynchronous message transfer protocol to
operate in low-energy environments.

A. Protocol Design

The protocol is separated into two modes — Transmit
(TX) and Receive (RX) modes. Nodes in the network can
have either or both modes running concurrently depending
on if they are a source node (producing data), a relay node,
or a sink node (the gateway). This overview focuses on how
a transmitter transmits its message to a receiver, rather than
how a message will be routed through a network to reach
a destination node. With respect to routing, the easiest and
most straightforward method by far is a static routing multi-
hop architecture culminating in a single message sink, as
described in [3]. However, with some further design, the
protocol can be modified to support either static routing or
dynamic routing methods, such as in a mesh network.

The Finite State Machine representations of TX and RX
are shown in Figure 1 and Figure 2, respectively. The trans-

Sleep Receiving Received

Event: Timer expires
—————————
1. Set receive window δ

Event: Timer expires
—————————
1. Sleep for X ∼ Exp(λRX)

Event: Data received
—————————
1. Process packet

Event: Invalid packet
—————————
1. Discard packet
2. Sleep for X ∼ Exp(λRX)

Event: Valid packet
————————–
1. Send ACK
2. Push to packet queue
3. Sleep for X ∼ Exp(λRX)

Fig. 2. The FSM representation of RX. The nodes represent the states and
the arcs represent the transition which are triggered by events and invoke
actions.

mitter will transmit periodically, with a sleep time (denoted
by XTX) sampled from a negative exponential distribution
with parameter λTX such that XTX ∼ Exp(λTX). Upon
waking up, the transmitter will transmit a packet (if it has
one) and transition to the waiting state for ACK. Similarly,
the receiver periodically receives and then goes to sleep
with a sleep time sampled from a negative exponential
distribution with parameter λRX. Upon waking up, it listens
for a transmission for a time denoted by δ. If it receives a
valid packet (determined by a checksum that is appended
with the transmitted packet), it sends an ACK and goes back
to sleep for a random period of time. If a correct ACK is
not received within 10 ms, the transmitter will reattempt the
packet as a new packet.

B. Mathematical Analysis

For data transfer to occur successfully, the receiver must be
receiving at the same time that the sender is transmitting (i.e.
they synchronize). The probability that they will synchronize
is determined by the parameters λTX, λRX, and δ. The
expected values of the TX and RX sleep times are λ−1

TX and
λ−1

RX , respectively.
Low RX/TX sleep times will increase synchronization

probability while high RX/TX sleep times will decrease
synchronization probability. While low sleep times increase
synchronization probability, for multiple senders transmitting
to one receiver, the probability of collision, where two
senders transmit at the same time, increases. This can be
modeled following the birthday paradox, but further dis-
cussion is omitted for brevity. Another parameter is the
ACK wait time, the duration for which the transmitter will
wait for an ACK. However, the ACK wait time’s effect on
synchronization probability is negligible.

We can estimate the expected time for a successful trans-
mission. Let the time taken for TX and RX to synchronize be
given by the random variable T . For simplicity, we assume
that if TX and RX are both awake at the same time a packet
will be successfully transmitted. We consider the case of
when RX becomes awake at time t for a window of time δ,

2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks

981Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 01,2020 at 22:04:52 UTC from IEEE Xplore. Restrictions apply.

Last TX
activation

s

t− s

RX activation

t

Synchronization window

RX deactivation

t+ δ time

Fig. 3. This timeline shows the series of events that occur in the case
mentioned in the mathematical motivation.

and TX was last active at time s, s < t. Any other scenario
simplifies into this case.

Figure 3 shows the timeline of events. When RX activates,
the sender has slept for t− s seconds. Let X be the random
variable that denotes the time for the transmitter to wake up
after the receiver activates. Since the receiver activation is
a random incidence on the sleep time of TX, which has
a negative exponential distribution, then X has the same
distribution as XTX due to the memoryless property.

Synchronization occurs when the sender wakes up within
the window of time that the receiver is active. Thus the
probability of synchronization is given by

P (X < δ) = 1− e−λTXδ (1)

Since the sleep times are independent and identical dis-
tributed, we make the assumption that each receiver activa-
tion is a trial with the probability of success 1 − e−λTXδ .
Let Y be a random variable that denotes the number of
trials before the sender and receiver synchronize. This then
takes the form of a Geometric distribution with parameter
(1− e−λTXδ). Consequently, the expected number of trials to
succeed is given by

E[Y] =
1

1− e−λTXδ
. (2)

We make another assumption that the time in between trials
on average is equal to λ−1

RX + δ, which is the expected sleep
time of the receiver plus its awake window. Let T be the
random variable that denotes the time until synchronization.
The expected value of T is then given by

E[T] =
1

1− e−λTXδ
(λ−1

RX + δ) (3)

We estimate energy usage with the assumption that each
TX activation incurs a constant cost of aTX, while each RX
activation incurs a cost that is a function of its window size
aRXδ. Let BTX, BRX be the random variables representing
the energy used by TX and RX to successfully transmit one
packet. Then, the estimated expected energy used by TX and
RX are

E[BTX] = aTXλTX
1

1− e−λTXδ
(λ−1

RX + δ) (4)

E[BRX] = aRXδ
1

1− e−λTXδ
(5)

(4) follows from the fact that the number of TX activations
is a Poisson process with rate λTX, and (5) follows from
the fact that the number of trials in G is the number of RX
activations.

In this section, we studied the impact of the
parameters (λTX, λRX, δ) on T and the parameters
(aTX, λTX, λRX, δ), (aRX, λTX, δ) on (BTX, BRX) respectively.
One feature of interest is that with respect to the parameter
δ given λTX, λRX, there is an optimal (minimum) packet
transfer time which can be determined.

C. Importance of the Asynchronous Property

The asynchronous property of the RAP protocol gives
three main advantages over a synchronous protocol: avoid-
ance of continuous clock misalignment, skewed clock inde-
pendence, and collision avoidance.

1) A synchronous protocol with a set time period for
advertisement and synchronization can lead to contin-
uous clock misalignment (or alignment) between two
nodes, where the communication is constantly failing
or constantly succeeding (thus blocking other nodes
on the channel). An asynchronous protocol naturally
resolves this potential issue by producing random
synchronizations that are independent and unlikely to
form persistent timing patterns.

2) More generally, because of the random timing of
the asynchronous property, each node has no timing
reliance on its previous state. The overall network
remains unaffected by individual clock skews, whereas
a synchronous network can be blocked by continuous
clock misalignment.

3) Synchronization to a global clock can increase the
chances of collision when two or more nodes attempt
to transmit on the same channel. An asynchronous pro-
tocol naturally avoids repeated collisions on the same
channel by randomizing transmission and receiving
timings.

III. SIMULATION ANALYSIS

To model the protocol, we developed an event based
simulation environment, used to simulate networks running
the protocol (Section V). The simulation model allowed us
to explore the impact of various protocol parameters and net-
work tree configurations. The simulation is written in Python
and uses the SimPy library [20]. SimPy is an event simulation
framework which lets us create interacting processes. The
simulation mirrors the nodes in the deployment by creating
a process for each node and making them communicate
through timed events. The code of the simulation is modeled
after the deployment code, there are state changes, similar
timings and similar packet queue behavior.

The key input parameters of the simulation are the two
sleep rates, λRX and λTX. The simulation outputs all of
the packets that have been transmitted. Each packet has
the following information: when it was created, which node
created it, when it reached the gateway, and how long it
took for the packet to reach the gateway (packet age). These
outputs are processed to measure the distribution of the
packet age. In addition, simulation also records the metadata
of each node. Specifically, it records how long the node
sleeps, how long it spends transmitting packets, and how

2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks

982Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 01,2020 at 22:04:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The packet age as a function of λ−1
RX and λ−1

TX . Parameter: δ =
10 ms

long it spends receiving packets. The output is a percentage
of total time for each type of activity. These statistics serve as
approximations of the power usage of nodes. Since the actual
power usage for each type of activity depends on factors such
as the hardware used and the physical environment, we use
the sum of time spent for transmitting and receiving as a
proxy for actual power usage.

A. Simulation Results

For our simulation analysis we first consider a three node
network consisting of a source node, a relay node, and a sink
node. The source node generates packets whenever its queue
is empty, then packets travel to the relay node, and finally to
the sink node. We vary TX and RX sleep times throughout
our simulation. Note that sleep times are inverses of the sleep
rates, λTX and λRX.

a) Packet Age: The graph of packet ages (Figure 4)
looks like a slope with a peak at highest sleep times and
the lowest point at lowest sleep times. Therefore, packet
age is proportional to sleep time. This is as expected; if the
nodes sleep for shorter periods of time, they will transmit and
receive more often. The slope is symmetrical along TX/RX
axes, so we can conclude that contributions from RX/TX
activity to the overall performance of the network are roughly
the same.

b) Total Awake Time: Awake time graph (Figure 5)
is also a sloped mesh. In the case of awake time, the
lowest point happens at highest sleep times, the highest
point happens at lowest sleep times. Awake time is inversely
proportional to average sleep time; as nodes sleep more, the
time and energy spent transmitting and receiving goes down.

c) Multiple Sender with Single Receiver: We expand
upon our prior simulation with a network consisting of a
single sink node with N source nodes attached to it, where
N varies and λTX and λRX parameters are fixed at 1/400ms.
The purpose of this simulation is to find out how much the
network performance performs as the number of children

Fig. 5. Percentage of time awake as it relates to the λ−1
RX and λ−1

TX .
δ = 10 ms

Fig. 6. The boxplot of the packet age as the number of children increases.
Parameters: λTX = λRX = 1/400 ms δ = 10 ms.

increases. According to the simulation results (Fig. 6), the
performance doesn’t decline significantly and is almost stable
within 1 to 32 children. Packet age start to increase when
the number of children exceeds 128.

IV. IMPLEMENTATION

A. Libraries and environment

We chose to implement RAP in the open source Arduino
environment, using the interactive Adafruit Feather 32u4
Radio (RFM69HCW) 433MHz [1] as the backbone of the
implementation, which can be programmed to read input
from sensors as well as communicate on radio signals. The
Arduino IDE, which includes a user interface and a serial
monitor, is used for programming and debugging the data
transfer application.

The RadioHead Packet Radio library [14]is an object
oriented library for sending and receiving formatted data on

2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks

983Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 01,2020 at 22:04:52 UTC from IEEE Xplore. Restrictions apply.

a range of embedded processors. It abstracts packet transmis-
sion and reception processes, including packet creation, CRC
checking, transmission-related timing setup, and acknowl-
edgement into simple functions. The Arduino SleepyDog
library [2]configures the sleep behaviors of Adafruit Feather
32u4, allowing the minimization of energy usage in the
inactive state.

B. Process structure

The master process is controlled by a finite state ma-
chine that schedules sub-processes based on a master timer.
Sub-processes such as transmit (TX), receive (RX), data
packet creation, and health packet creation are executed
via corresponding scheduled awake time. The finite state
machine determines the next state based on the shortest
time to the next scheduled sub-process. For example, the
transmit process and the receive process are both scheduled
via a negative exponential function, while the packet gen-
eration sub-processes are set based on specific deployment
requirements. As a result, the transmit and the receive sub-
processes are not guaranteed to be in order and varies due
to their corresponding sampled sleep times. A timer based
state machine is preferred over a linear process because it
allows an integrated TX and RX process. While the queue is
non-empty, unsuccessful TX transmissions do not affect or
block the RX process.

C. Optimizations

After the initial implementation of RAP with simple
transmit and receive functionality, several additional features
were implemented in order to further improve performance.

1) Packet Chaining: RAP creates a synchronization pro-
cess that is completely random, and thus intermittent
and unpredictable by nature. In order to maximize a
successful communication, upon successful receipt of a
message, both the sender and receiver enter a synchro-
nized state where multiple messages can be transmitted
without additional synchronization. After successfully
receiving an acknowledgement, the sender will attempt
to send another packet (if it has one) and wait for
another acknowledgement. Similarly, the receiver will
wait for another message after successfully receiving
a packet and acknowledging. If it receives another
message, this process is repeated.
In networks where messages can accumulate in nodes,
the efficacy of one successful synchronization can be
significantly increased. This lessens the number of
independent communications between two nodes and
consequently lessens the overall networking load at the
trade off of short bursts of network monopolization by
a single connection.

2) Concurrent RX/TX: In this implementation, a node
runs both the TX and RX processes simultaneously;
that is, the TX and RX processes are independent and
concurrent. Two timers, for TX and RX respectively,
are both set by inverse exponential functions. In a
basic implementation of the protocol, the RX process

is run after the TX process, creating a pseudo order
that prioritizes the TX process (given a non-empty
queue), obstructing the random property of the RAP
protocol. With concurrent RX and TX process, a node
can interchange between TX and RX process solely
based on their individual timer.

3) Duplicate Detection: If a packet successfully reaches
the receiving node but the overall transmission fails –
that is, if the acknowledgement fails to return to the
sender – the receiving node saves the packet and filters
out any duplicates received in later transmissions. A
packet from any child is considered unique if its origin
ID and sequence number are jointly different from the
saved record in the respective hash tables of the parent.
The parent will send acknowledgement in response to
duplicates to prevent further repeated transmission.

V. DEPLOYMENT AND RESULTS

The deployment has three kinds of nodes: sensor node,
relay node, and gateway node, whose components are respec-
tively Adafruit feather 32u4, temperature sensor DS18B20
[6], and raspberry pi. Adafruit feather 32u4 is a portable
microcontroller board with radio module from Adafruit.
The feather board sends and receives packets via radio.
The temperature sensor is the DS18B20 digital waterproof
thermometer from Sparkfun, whose 1-Wire interface allows
multiple sensors to connect to a single pinout on a broad.
Raspberry Pi is a single-board computer that uploads data to
the internet. All nodes are sealed in waterproof cases.

The CABA facility at UC Davis (Figure 7) was chosen
for the in-field deployment and testing of the wireless sensor
network. In this context our network continuously monitors
and reports the water temperatures of 20 tanks containing
Chinook salmon (Oncorhynchus tshawytscha). This applica-
tion allows for continuous temperature monitoring and real-
time data collection on tank temperature.

a) Sensor Nodes: A sensor node contains one Adafruit
Feather board and four sensors. We design a node that can
connect up to six sensors, but four sensors were best suited
for this application setup. All sensor probes were submerged
in the tanks. The node processes the four temperature read-
ings from sensors into a packet and sends the packet to its
parent node using the wireless interface.

b) Relay Nodes: A relay node contains an Adafruit
Feather board. It receives packets from its children nodes
and sends packets to its parent node. A relay node can have
multiple children nodes but only one parent node.

c) Gateway Node: A gateway node is similar to a relay
node, except it connects to a Raspberry pi via USB. It
receives packets and sends the data to raspberry pi, which
then uploads the data to Google Drive using WiFi.

d) Packet Structure: A packet consists of the following
fields: packet age(0-65536 seconds), previous child node
id(0-254), packet number(0-254), origin node id(0-254), se-
quence of readings(0.1-99.0 floats). The packet age denotes
the cumulative time the packet spent in the path to the
Gateway node. For example, consider a packet with the

2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks

984Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 01,2020 at 22:04:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Aerial view of CABA. Nodes (35, 36, and 131) are inside the
building (shelter 3). Nodes (69, 70, 71, 133, and 254) are outside of
buildings.

Fig. 8. The topology of the wireless sensor network deployed at CABA.

following data values: ”45, 3, 120, 7, 20.3, 25.2, 31.0, 15.4,
0.0, 0.0”. This means the packet has cumulatively spent 45
sec in all the previous node, it came from node 3, the packet
number is 120, and the first node, where the packet was
created, is node 7. The last six float digits are temperature
readings.

e) Health packet: Health packets are generated at all
relay nodes and the gateway node. These packets are used
to confirm the status of the nodes.

A. Deployed Network

We can only use the radio frequency from 433 MHz to
434.5 MHz in the area around CABA. The Adafruit Feather
can distinguish radio channels that are 0.25 MHz apart,
thus the deployed WSN has 6 radio channels, 433.00 MHz,
433.25 MHz, 433.50 MHz ... 434.50 MHz. As shown in
Figure 8, the WSN has three layers: 1. the gateway node
(254), 2. the two relay nodes (129 & 130), and 3. the five
sensor nodes (35, 36, 69, 70, and 71). Each layer uses one
channel to prevent transmission to incorrect nodes.

B. Deployment Result

Figure 9 shows the box plots of the packet age for packets
generated by the different sensors in the deployment. Using

Fig. 9. The box plots of the packet age for the different sensors from
the deployment. Parameters: λTX = 1/200 ms, λRX = 1/600 ms, and
δ = 10ms.

Fig. 10. The box plots of the packet age for the different sensors
from the simulation of the deployment topology. Parameters: λTX =
1/200 msλRX = 1/600 ms δ = 10ms.

simple grouping, the graphs show few outliers and are within
reasonable limits. The ages are similar for all nodes, meaning
that the randomized protocol spreads performance across
nodes evenly. The ages from outdoor nodes (a group of 3)
are slightly higher than ages from shelter3 (a group of 2),
as expected, because higher number of children connected
to the same relay node increases packet age slightly due to
collisions.

Figure 10 shows the simulation results of deployment
topology. The simulation results match the deployment re-
sults, thus validating the simulation model.

VI. RELATED WORK

Optimizing energy efficiency of wireless sensor networks
has been studied extensively [9]. A Sparse Topology and

2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks

985Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 01,2020 at 22:04:52 UTC from IEEE Xplore. Restrictions apply.

Energy Management (STEM) [18] algorithm was proposed
to efficiently wake up nodes from a deep sleep state without
the need for an ultra low-power radio. This allows a tradeoff
between energy efficiency and the latency that is incurred due
to waking up the node. The tradeoff between data fidelity and
energy efficiency of the sensor network has been investigated
in [4], Furthermore, energy efficient routing has been studied
in [17], [11]

The application of the birthday paradox in wireless sensor
networks was reported in [13]. The paper adopted the
birthday paradox to develop a suite of protocols (referred
to as birthday protocols) that saves energy during the de-
ployment phase of the sensors as well as the node discovery
phase. The approach has been been adopted in a number
follow-up studies [15], [23], [5]. In this paper we adopt the
birthday paradox and develop data transfer protocol for static
wireless sensor network. We also implement the protocol on
a wireless device and demonstrate the advantage of RAP both
in terms of energy savings and in terms of having multiple
source share a channel to a single receiver.

VII. CONCLUSIONS

In this paper we designed and implemented a randomized
and asynchronous protocol to aggregate data in a wireless
sensor network. Both the randomized and asynchronous
nature of the protocol is important for energy efficiency
of the network nodes, ensuring their functionality without
requiring central clock synchronization. We analyzed the
protocol using mathematical model and detailed simulation,
demonstrating that RAP achieves low mean latency of data
transfer while minimizing the energy usage. Finally, we
implemented the protocol and deployed it for distributed
temperature monitoring at CABA of UC Davis.

In our current deployment, our sensor network adopts a
fixed tree network with static routing, which can be extended
to dynamic neighbour discovery in the future. Additionally,
we plan to develop an adaptive algorithm to adjust the
sleep rates to node and network states. For example, the
node can automatically adjust the sleep rate according to
the number of packets it has received and is going to send,
or battery life if batteries power the nodes. The extension
can further improve the efficiency of packet transmission
and increase the lifetime of the nodes. Finally, we plan to
improve network monitoring. In our current deployment, the
health packet contains the number of packets waiting in the
queue only. More node information can be added, such as
battery life, number of send or receive packets, number of
failure transmission, and other data that are related to the
status of nodes. The extension can help us better understand
the status of the network.

ACKNOWLEDGMENTS

This work was supported by grants from the United
States Fish and Wildlife Service and the National Science
Foundation (NSF) grant CNS-1528087.

REFERENCES

[1] Adafruit Industries. Adafruit feather 32u4 radio with RFM69HCW
module. https://cdn-learn.adafruit.com/downloads/
pdf/adafruit-feather-32u4-radio-with-rfm69hcw-
module.pdf.

[2] Adafruit Industries. Adafruit sleepydog arduino library. https://
github.com/adafruit/Adafruit_SleepyDog.

[3] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal
Cayirci. Wireless sensor networks: a survey. Computer networks,
38(4):393–422, 2002.

[4] Athanassios Boulis, Saurabh Ganeriwal, and Mani B Srivastava. Ag-
gregation in sensor networks: an energy–accuracy trade-off. Ad hoc
networks, 1(2-3):317–331, 2003.

[5] Tingjun Chen, Javad Ghaderi, Dan Rubenstein, and Gil Zussman.
Maximizing broadcast throughput under ultra-low-power constraints.
IEEE/ACM Transactions on Networking, 26(2):779–792, 2018.

[6] Dallas Semiconductor. DS18B20 programmable resolution 1-
wire digital thermometer. https://cdn.sparkfun.com/
datasheets/Sensors/Temp/DS18B20.pdf.

[7] Dae-Man Han and Jae-Hyun Lim. Smart home energy management
system using ieee 802.15. 4 and zigbee. IEEE Transactions on
Consumer Electronics, 56(3):1403–1410, 2010.

[8] Mohamed Hefeeda and Majid Bagheri. Forest fire modeling and early
detection using wireless sensor networks. Ad Hoc & Sensor Wireless
Networks, 7(3-4):169–224, 2009.

[9] Holger Karl and Andreas Willig. Protocols and architectures for
wireless sensor networks. John Wiley & Sons, 2007.

[10] Roland Kays, Margaret C Crofoot, Walter Jetz, and Martin Wikelski.
Terrestrial animal tracking as an eye on life and planet. Science,
348(6240):aaa2478, 2015.

[11] Arvind Kumar et al. Energy Efficient Clustering Algorithm for Wireless
Sensor Network. PhD thesis, Lovely Professional University, 2017.

[12] Subramania Ananda Kumar and Paramasivam Ilango. The impact of
wireless sensor network in the field of precision agriculture: a review.
Wireless Personal Communications, 98(1):685–698, 2018.

[13] Michael J McGlynn and Steven A Borbash. Birthday protocols for low
energy deployment and flexible neighbor discovery in ad hoc wireless
networks. In Proceedings of the 2nd ACM international symposium
on Mobile ad hoc networking & computing, pages 137–145. ACM,
2001.

[14] Mike McCauley. Radiohead packet radio library for embed-
ded microprocessors. https://www.airspayce.com/mikem/
arduino/RadioHead/.

[15] Santashil PalChaudhuri and David B Johnson. Birthday paradox for
energy conservation in sensor networks. Sleep, 9:14mA, 2002.

[16] Bryan Parno, Adrian Perrig, Virgil Gligor, et al. Distributed detection
of node replication attacks in sensor networks. In IEEE Symposium
on Security and Privacy. Oakland, CA, USA, 2005.

[17] Venkatesh Rajendran, Katia Obraczka, and Jose Joaquin Garcia-Luna-
Aceves. Energy-efficient, collision-free medium access control for
wireless sensor networks. Wireless networks, 12(1):63–78, 2006.

[18] Curt Schurgers, Vlasios Tsiatsis, Saurabh Ganeriwal, and Mani Srivas-
tava. Optimizing sensor networks in the energy-latency-density design
space. IEEE transactions on mobile computing, 1(1):70–80, 2002.

[19] Biljana L Risteska Stojkoska and Kire V Trivodaliev. A review of
internet of things for smart home: Challenges and solutions. Journal
of Cleaner Production, 140:1454–1464, 2017.

[20] Team Simpy. Documentation for simpy. c2002-2019. https://
simpy.readthedocs.io/en/latest/contents.html.

[21] J. Wang, D. Li, M. Zhou, and D. Ghosal. Data collection with
multiple mobile actors in underwater sensor networks. In 2008
The 28th International Conference on Distributed Computing Systems
Workshops, pages 216–221, June 2008.

[22] Qiang Wang, Andreas Terzis, and Alex Szalay. A novel soil mea-
suring wireless sensor network. In 2010 IEEE Instrumentation &
Measurement Technology Conference Proceedings, pages 412–415.
IEEE, 2010.

[23] Qiang Wang, Andreas Terzis, and Alex Szalay. A novel soil mea-
suring wireless sensor network. In 2010 IEEE Instrumentation &
Measurement Technology Conference Proceedings, pages 412–415.
IEEE, 2010.

[24] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless
sensor network survey. Computer networks, 52(12):2292–2330, 2008.

2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks

986Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 01,2020 at 22:04:52 UTC from IEEE Xplore. Restrictions apply.

